Multimodal nonlinear microscopy of tissues

Two-photon (2PF) microscopy

Coherent microscopes: SHG, THG

Mulltiphoton/multicolor imaging

Imaging depth

Imaging speed

Epidetection of coherent signals

Emmanuel Beausaure

Ecole Polytechnique - Palaiseau

Lab. for optics and biosciences

www.lsb.polytechnique.fr

A. Santos, T. Savy, S. Farge, J. Legouis, K. Loulier, K. Matho, M. Mont, J. Javel

Scanning nonlinear microscopy

Pulsed NIR beam is focused inside the sample.

Focused spot is scanned in 2D or 3D with mobile mirrors to record an image.

Animation: T. Savy

Nonlinear (=multiphoton) microscopy

Nonlinear microscopy in biology: some fields of application

Neuroscience

THG: Lipid/water interfaces, etc

THG: Organized fibers: collagen, muscle, etc

Different multiphoton processes

Excitation: focused pulsed infrared light

Extraction: 1 photon excited fluorescence

2PEF: 2 photon excited fluorescence

Advantage for tissue imaging

2PEF microscopy: Dark & Webb (Cornell Univ. 1990)

1-photon excited fluorescence

Excitation: focused pulsed infrared light

(700-1300nm, 100fs, 1-100MHz)

2-photon excited fluorescence

Deep imaging

(Max 0.4 - 0.6mm)

[+] keeps 3D micron-scale resolution.

[+] confined photoperturbation

2PEF microscopy: Denk & Webb (Cornell Univ. 1990)

Pulsed lasers are used for optimal multiphoton excitation with minimal average power

Pulses are typically ~100 femtoseconds FWHM

T: Ti:Sapphire laser

Deep imaging

Gain with pulsed excitation:

T: Ti:Sapphire laser

E = FWHM

FWHM = 10 ns

≈ 10 ns

Gain with pulsed excitation:

Gain with pulsed excitation:
THG, 3HG, and SHG imaging of the human cornea.

3HG (3rd harmonic) contrast: heterogeneity

- **Homogeneous medium**
 - no 3HG!
 - interference partially constructive
- **Interface between different media**
 - 3HG detects interfaces!

Visualization of tissue morphology (without labeling)

- Contrast: interfaces between cells and extracellular medium:
 - Lipid membranes, ...

Detection of interfaces (3HG) → 3D morphology

- Visibly cell contours
- Calculation of 3HG as a function of size

SHG probes the macromolecular organization of collagen

- Molecules
- Macromol. organization
- Tissue

 - Fibrous matrix (Collagen I)
 - Non fibrous matrix (Collagen IV, ...)
 - No SHG

- SHG sensitive to laser polarization and molecular orientation

- Source of signal
 - Molecular origin: peptide bonds
 - First level of order: organization of peptide bonds in a helical pattern
 - SHG, 2PEF: two-photon-excited fluorescence

- More info → nonlinear imaging with broadband excitation

- Anti Col - FITC
- Anti Col IV - FITC
- SHG probes the macromolecular organization of collagen

Example: multimodal imaging of human cornea

- Z-stack 2PEF, THG, SHG
- Imaging cell divisions in the zebrafish embryo

- SHG provides landmark with sub-minute precision

- More contrast mechanisms → additional information

SHG (3rd harmonic) contrast: heterogeneity

- Homogeneous medium
 - no 3HG!
 - interference partially constructive
- Interface between different media
 - 3HG detects interfaces!

Detection of interfaces (3HG) → 3D morphology

Visibility of cell contours

Calculation of 3HG as a function of size

Imaging cell divisions in the zebrafish embryo

- SHG provides landmark with sub-minute precision

- More contrast mechanisms → additional information

2PEF, two-photon processes

- Planar excitation
- Excitation spectrum

- THG, 3HG: second-harmonic generation sensitive to interfaces and heterogeneity

- CARS, SRS: «nonlinear Raman» molecular vibration modes (eg CH2 stretch)

Strategy 1: two-color wave mixing with combined pulses

- 2PEF, two-photon processes
- SHG (2HG): second-harmonic generation sensitive to asymmetry at sub-µm scale
- THG (3HG): third-harmonic generation sensitive to interfaces and heterogeneity

Strategy 2: shaped broadband pulses

- Pump-probe microscopy
 - excited-state absorption (eg melanin, Hb)

More contrast mechanisms → additional information
Multicolor Multiphoton Microscopy for Volume and Live Imaging

Some situations requiring multiple λ:
- Image several FPs: GFP+mCherry+… labeling
- Photoactivation
- Quantitative FRET
- Brainbow: genetic engineering strategies for tracing cell lineage and neuronal circuits

Non Resonant (nm)

Multiphoton Microscopy for volume live and imaging

Mixed wavelengths to address mixed xFPs

- Brainbow: genetic engineering for tracing cell lineage and neuronal circuits
- Some situations requiring multiple λ:
 - Image several FPs: GFP+mCherry+… labeling
- Photoactivation
- Quantitative FRET

Brainbow:
- Genetic engineering for tracing cell lineage and neuronal circuits
- Some options:
 - Wavelength tuning
 - 3 (or more) femtosecond lasers
 - Excite several dyes with single λ
- Increased bleaching
- Wavelength mixing

CARS is not background free

CARS involves using two laser frequencies to interact with a specific molecular vibration

CARS signals are generated at wavelengths shorter than the excitation wavelength (anti-Stokes)

Implementation example: two picosecond pulse trains (oscillator + OPO)

Nonlinear imaging with broadband excitation

Strategy 2: Shaped broadband pulses

Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy

Advantages of SRS over CARS:
- SRS is background free
- Linear dependence on concentration (better for small concentrations)
- Directly gives Raman spectrum
- BUT more complex
 - Note: A CARS setup can be converted to SRS
 - CARS still good for lipid studies

10 MHz modulation and lock-in

What limits the imaging depth?

Confined excitation even in scattering media … but the number of ballistic excitation photons decreases exponentially with depth

| Signal: |
| \[S = \frac{T}{t} \left(\frac{P_0}{P_{in}} \right) \Phi(z_{max}) T/\tau \] |
| **average laser power** |
| \(z_{max} = \left(\frac{L_{ex}}{\alpha} \right) \ln(\alpha P\sqrt{\Phi(z_{max}) T/\tau}) \) |
| \(\alpha \)- fluorophore efficiency and detector noise |
| \(\Phi(z_{max}) \)- generated fluorescence typically \(\approx 600 \mu m \) (layer 2/3 neocortex) |
| \(T \)- inverse laser cycle duty |

Endogenous GFP RFP THG

100 µm

Live Multicolor 2P Imaging: Chick Embryo Spinal Cord

Developing spinal cord tissue slice

CARS process (vibration-specific)

- Resonant (signal)
- Non resonant (non-specific)

FWM (non-specific)

CARS intensity:

\[I_{CARS} \approx \Delta \Phi \left(\frac{P_{in}}{P_{0}} \right) \Phi(z_{max}) T/\tau \]

One way to circumvent this difficulty -> SRS microscopy

CARS is mixed with these other non-specific wave-mixing processes

Polarization:
- Resonant (signal)
- Non resonant (non-specific)

Implementation example: two picosecond pulse trains (oscillator + OPO)

Excitation

- 1100 900 1000

CFP-YFP-tdTomato

Excitation

- Photoactivation

Mahou et al, Nat Methods 2012

Some options:
- Wavelength tuning
- 3 (or more) femtosecond lasers
- Excite several dyes with single λ

Increased bleaching
- Wavelength mixing

CARS is not background free

CARS involves using two laser frequencies to interact with a specific molecular vibration

CARS signals are generated at wavelengths shorter than the excitation wavelength (anti-Stokes)

Implementation example: two picosecond pulse trains (oscillator + OPO)

What limits the imaging depth?

Confined excitation even in scattering media … but the number of ballistic excitation photons decreases exponentially with depth

| Signal: |
| \[S = \frac{T}{t} \left(\frac{P_0}{P_{in}} \right) \Phi(z_{max}) T/\tau \] |
| **average laser power** |
| \(z_{max} = \left(\frac{L_{ex}}{\alpha} \right) \ln(\alpha P\sqrt{\Phi(z_{max}) T/\tau}) \) |
| \(\alpha \)- fluorophore efficiency and detector noise |
| \(\Phi(z_{max}) \)- generated fluorescence typically \(\approx 600 \mu m \) (layer 2/3 neocortex) |
| \(T \)- inverse laser cycle duty |

Endogenous GFP RFP THG

100 µm

Live Multicolor 2P Imaging: Chick Embryo Spinal Cord

Developing spinal cord tissue slice

CARS process (vibration-specific)

- Resonant (signal)
- Non resonant (non-specific)

FWM (non-specific)

CARS intensity:

\[I_{CARS} \approx \Delta \Phi \left(\frac{P_{in}}{P_{0}} \right) \Phi(z_{max}) T/\tau \]

One way to circumvent this difficulty -> SRS microscopy

CARS is mixed with these other non-specific wave-mixing processes

Polarization:
- Resonant (signal)
- Non resonant (non-specific)

Implementation example: two picosecond pulse trains (oscillator + OPO)

What limits the imaging depth?

Confined excitation even in scattering media … but the number of ballistic excitation photons decreases exponentially with depth

| Signal: |
| \[S = \frac{T}{t} \left(\frac{P_0}{P_{in}} \right) \Phi(z_{max}) T/\tau \] |
| **average laser power** |
| \(z_{max} = \left(\frac{L_{ex}}{\alpha} \right) \ln(\alpha P\sqrt{\Phi(z_{max}) T/\tau}) \) |
| \(\alpha \)- fluorophore efficiency and detector noise |
| \(\Phi(z_{max}) \)- generated fluorescence typically \(\approx 600 \mu m \) (layer 2/3 neocortex) |
| \(T \)- inverse laser cycle duty |

Endogenous GFP RFP THG

100 µm

Live Multicolor 2P Imaging: Chick Embryo Spinal Cord

Developing spinal cord tissue slice

CARS process (vibration-specific)

- Resonant (signal)
- Non resonant (non-specific)

FWM (non-specific)

CARS intensity:

\[I_{CARS} \approx \Delta \Phi \left(\frac{P_{in}}{P_{0}} \right) \Phi(z_{max}) T/\tau \]

One way to circumvent this difficulty -> SRS microscopy

CARS is mixed with these other non-specific wave-mixing processes

Polarization:
- Resonant (signal)
- Non resonant (non-specific)

Implementation example: two picosecond pulse trains (oscillator + OPO)

What limits the imaging depth?

Confined excitation even in scattering media … but the number of ballistic excitation photons decreases exponentially with depth

| Signal: |
| \[S = \frac{T}{t} \left(\frac{P_0}{P_{in}} \right) \Phi(z_{max}) T/\tau \] |
| **average laser power** |
| \(z_{max} = \left(\frac{L_{ex}}{\alpha} \right) \ln(\alpha P\sqrt{\Phi(z_{max}) T/\tau}) \) |
| \(\alpha \)- fluorophore efficiency and detector noise |
| \(\Phi(z_{max}) \)- generated fluorescence typically \(\approx 600 \mu m \) (layer 2/3 neocortex) |
| \(T \)- inverse laser cycle duty |

Endogenous GFP RFP THG

100 µm

Live Multicolor 2P Imaging: Chick Embryo Spinal Cord

Developing spinal cord tissue slice

CARS process (vibration-specific)

- Resonant (signal)
- Non resonant (non-specific)

FWM (non-specific)

CARS intensity:

\[I_{CARS} \approx \Delta \Phi \left(\frac{P_{in}}{P_{0}} \right) \Phi(z_{max}) T/\tau \]

One way to circumvent this difficulty -> SRS microscopy

CARS is mixed with these other non-specific wave-mixing processes

Polarization:
- Resonant (signal)
- Non resonant (non-specific)

Implementation example: two picosecond pulse trains (oscillator + OPO)

What limits the imaging depth?

Confined excitation even in scattering media … but the number of ballistic excitation photons decreases exponentially with depth

| Signal: |
| \[S = \frac{T}{t} \left(\frac{P_0}{P_{in}} \right) \Phi(z_{max}) T/\tau \] |
| **average laser power** |
| \(z_{max} = \left(\frac{L_{ex}}{\alpha} \right) \ln(\alpha P\sqrt{\Phi(z_{max}) T/\tau}) \) |
| \(\alpha \)- fluorophore efficiency and detector noise |
| \(\Phi(z_{max}) \)- generated fluorescence typically \(\approx 600 \mu m \) (layer 2/3 neocortex) |
| \(T \)- inverse laser cycle duty |
Deep tissue multiphoton microscopy using longer wavelength excitation

“Transparence window” of tissues

Near-IR excitation limits absorption and scattering:

- Reduced perturbation of samples
- Good penetration in tissues (IR excitation, λ = 0.7-1.3 µm) (scattering mean free path ~100-200 µm)

Multiphoton microscopy:

- At large depths: contrast & resolution loss
- Good penetration in tissues (IR excitation, λ = 0.7-1.3 µm)

How to increase imaging depth?

\[z_{\text{max}} = L_{\text{max}}^{(c)} \ln(\alpha \bar{P} \sqrt{\phi(z_{\text{max}})} T / \tau) \]

- 3. Increase collection efficiency (\(\phi \))?

Typical multiphoton microscope

- Non-descanned > detection (close to objective)

Increasing penetration depth: conclusion

Excitation
- Longer excitation wavelength
- Tissue clearing
- Amplified pulses
- Wavefront control (adaptive optics)

Collection
- Low magnification, high NA to improve collection

(However: Low mag. objective multiplies by 10 -> equivalent to multiplying P by “only” 3)

→ Reaching fundamental limits for 2PEF beyond 1mm

Loss in contrast and resolution
Multiphoton microscopy in practice

- **A few messages**
 - Near-field microscopy provides 3D tissue imaging with 0.5-2-4µm resolution
 - Imaging depth: a few 100µms. Up to 1mm?
 - SHG obtained from fibrillar collagen and myofilaments; probes macromolecular organization; THG provides images of tissue morphology
 - Femtosecond laser-based methods are "easily" combined: multicolor 2PEF, mHG, laser ablation, etc

A few references

"Nonlinear magic: multiphoton microscopy in the biosciences"

"Advances in multiphoton microscopy for imaging embryos",

"Deep tissue two-photon microscopy"

"SH imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms"

More refs → www.lob.polytechnique.fr

Faster → parallelisation

<table>
<thead>
<tr>
<th>2p-microscopy</th>
<th>2PEF (standard)</th>
<th>Resonant scanning</th>
<th>Multifocal Light sheet (SPIM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel rate (speed)</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Accumulation time per voxel</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>Illumination laser intensity</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Laser average power</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

High-content imaging with 2P-SPIM

A few messages

- Check NIR transmission of microscope.
- Use adapted objective (transmission, working distance, etc)
- Use optimal excitation wavelength (GFP: 940-960nm)
- Detection filters # confocal microscopy: with a single fluorophore, short pass filter (ie SP80) to optimize collection
- Non-descanned detection / no need for pinhole
- PMT close to objective
- Epi-detection for thick sample, epi+trans otherwise.
- In short: do not use the same settings for confocal and multiphon microscopy!